
 

 

 

 

  

   

Bixi Bike  

Complex Network Analysis 

   

  

 

 

as part of   

the course  

   

  

 

 

MATH80627A   
(Complex Networks Analysis)  

  

 

 

  

presented to   

Gilles Caporossi  
 

 
 

by  

   
 

  

Mohammad Abbas Meghani - 11266035  

Adrien Hernandez - 11269225 

Andreea Firanescu – 11274520 

 

 



   
 

2 
 

1. Introduction 

 

As they have grown, bicycle-sharing networks all over the world have been the subject of 

extensive analysis in the past 10 years, and have seen a growing body of literature develop around 

them (Froelich et al., 2009; Lathia et al., 2012; Zaltz et al., 2013). Related research can be classified 

into three main streams, that is, i) offering models of bicycle flows to transport operators who can 

optimize their stations by uncovering spatiotemporal trends in bicycle usage and city data ii) 

servicing end-users in real-time planning of trips, and iii) supporting urban planning (Lathia et al., 

2012, p. 90). The analysis of bicycle usage is indeed interesting as it partly corresponds to human 

movement and cultural and geographic aspects of a city. It thus helps uncover spatiotemporal 

trends that can partly infer the “pulse” of a city, as what was put forward by Froelich et al., the 

first to do so (2009), and particularly appealing to researchers who inhabit a city and can therefore 

better contextualize the insights gathered from their analyses. 

The present project builds on the current literature by deriving insights from spatiotemporal 

bicycle-sharing data in Montreal. Specifically, it seeks to identify spatiotemporal clusters via 

community detection. The subject of community detection within a bicycle-sharing network is 

interesting because of i) the potential applications and the growing literature developing around it 

(as indicated above), ii) the ease of access to the data and the variety of community detection 

algorithms that can be applied to it, and iii) the use of spatiotemporal data for the application of 

new algorithms such as network science ones applied to time series. The approach to this project 

was an exploratory one as the main goal of the present project was to explore and become 

acquainted with community detection, one of the most important fields in network science.  
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2. Exploratory Data Analysis 

 

The second reason for the selection of our topic was the ease of access and manipulation 

of the data. Two options in terms of data presented themselves at the start of the project, that is, 

using sensor data collected by the city of Montreal and bicycle usage data by BIXI. While the BIXI 

data offered the time and the locations of the start and end points of a journey, the city of Montreal 

has sensors distributed throughout the city that can help trace bicycles. Combining both datasets 

would have however made it difficult to consider the flows and journeys of users, an issue for 

researchers when studying bicycle usage networks. Using solely sparse raw sensor readings was 

not an option as these lack the qualitative description aspect about the context of human mobility 

(Lathia et al., 2012, p. 92). While using solely the BIXI dataset can have its limitations in terms of 

considering full journeys, it is easy dataset to build a network from and offers many possibilities 

in terms of algorithms that can be applied.  

BIXI offers open access to its data in the form of csv files containing geolocation 

information about its stations (table 1) and spatial and temporal data about journeys (table 2). Each 

entry corresponding to an individual journey, the network built from it is spatial-temporal, and 

weighted. Therefore, nodes represent bike location stands, edges are bi-directed flows between 

two such stands, and the weight on each edge is given by the number of rides carried on edges. 

Excerpts from the data are shown below in the shape of pandas arrays.  
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There are 619 stations across Montreal, which is a large number for its population size 

compared to other cities (Zaltz et al., 2013). In 2019, around 5.5 million rides were registered. 

Some of these are self-loops, single-edge journeys which start and end on the same node. These 

were set to 0, as is accepted practice for community detection in the study of bicycle-sharing 

networks (Zaltz et al., 2013, p.2).  

To visualize the data and to start identifying strong patterns, we did a preliminary 

spatiotemporal data exploration. The months present in the data are April to October as these are 

the only months the bicycles are in use. As would be expected might be explained by Montreal 

climate, usage is the lowest in April and peaks in the middle of the summer (figure 1). Interestingly, 

when trips are aggregated, usage is higher during the week than on the weekend, which could infer 

Table 1. 2020 BIXI stations (tail) 

Table 2. 2020 BIXI journeys (tail) 
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higher usage of BIXI by commuters (for work use) rather than leisure users, which is consistent 

with findings for other North American cities (figure 2) (Zaltz et al., 2013). Indeed, BIXI usage is 

highest during rush hour, between 8am and 9am and between 4pm and 7pm (figure 3).  

 

 

The data for the Montreal network is in keeping with previous studies, such as that of Zaltz 

et al. (2013), who have also conducted community detection in various cities, which helped us 

Figure 1 Figure 2 Figure 3 

Figure 4. Montreal trip duration (data normalized by area under the curve)  
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validate our findings further on. As such, we have found similar trip duration as what they have 

found for the city of Washington D.C (figures 4 and 5). 

 

In order to better understand the specifics of the data, we start by applying node descriptors 

using Python’s NetworkX package, which give us an insight into the role of a node in a network. 

An important descriptor is centrality which considers the number of neighbours. When computing 

degree centrality (figure 6), which indicates the fraction of nodes one node is connected to, on part 

of the network (for computational time reasons), the highest centrality was associated to nodes in 

the center of the city, which is to be expected. Interestingly, the node with the highest centrality, 

the one situated at BANQ (Berri/de Maisonneuve) also matches the location of Montreal’s busiest 

metro station, Berri-UQAM. The next two nodes with the highest centrality were situated in the 

neighbourhood of Plateau Mont-Royal and the other next two in Downtown: 

Figure 5. Washington D.C. trip duration (data normalized by area under the curve), from Zaltz et al., 2013, p. 4 
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Different centrality measures were computed, and visual representations were made to be 

able to visualise the topography and identify important nodes. Most global descriptors offered 

similar findings: harmonic centrality and closeness centrality, had the same results for the nodes 

with the highest centrality, and the eigenvector centrality descriptor (which can also be considered 

as a local descriptor), that helps identify influencers, interchanged only the 4th and the 5th nodes. 

However, another global descriptor, betweenness centrality, offered very different results, finding 

nodes in the Old Port to be more central (figure 7). Indeed, these nodes would be the ones with the 

Figure 6. Degree centrality 

Top 5: 

BAnQ (Berri / de Maisonneuve) : 0.95146  

Métro St-Laurent (de Maisonneuve / St-Laurent) : 0.92718  

Métro Mont-Royal (Rivard / du Mont-Royal) : 0.91748  

du Président-Kennedy / Jeanne-Mance : 0.91586  

de Maisonneuve / Aylmer (ouest) : 0.91424 

Bottom 5: 

Argyle / de Verdun : 0.35275  

Métro Monk (Allard / Beaulieu) : 0.39644  

de l'Église / Bannantyne : 0.42557  

Place du Commerce : 0.43204  

Métro Georges-Vanier (St-Antoine / Canning) : 0.47896  
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most shortest paths going through them. This is an interesting finding as it can be indicative of 

bridging communities, but results are not always reliable in that sense. Load centrality, which is 

the fraction of all shortest paths that pass through that node, also found the same top five most 

central nodes to be in the same vicinity.  

The measure with the most distinct and perhaps unexpected results was Katz centrality, 

placing some relatively central nodes in the bottom 5:  

Figure 7. Betweenness centrality 

Top 5: 

Métro Lionel-Groulx (Atwater / Lionel-Groulx) : 

0.11945  

Métro Papineau (Cartier / Ste-Catherine) : 0.06767  

Ottawa / Peel : 0.06616  

BAnQ (Berri / de Maisonneuve) : 0.05689  

Chabot / du Mont-Royal : 0.05176 

 

Bottom 5: 

St-Urbain / de la Gauchetière : -0.06351  

Metro Jean-Drapeau (Chemin Macdonald) : -0.06089  

Milton / du Parc : -0.05292  

St-André / Ste-Catherine : -0.04895  

Villeneuve / St-Laurent : -0.04858  
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 An issue encountered with the data is that it indicated flows in terms of origin and 

destination but did not trace the full journey of the rider, a fairly common issue, as mentioned 

above. To visualize the journeys, we then used Dijkstra’s shortest path algorithm to identify 

potential routes. We imported from OpenStreetMap the Montreal network and used it to identify 

which closest road intersection would correspond to a node. Then, based on the route of each 

section, the shortest path was found. While this might not represent true journeys, there are other 

potential applications, such as identifying next nodes where to place a station. 

   

Figure 8. Djistra’s shortest path between BIXI stations 
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3. Methodology 

 

3.1. Community Detection Algorithms 

3.1.1. Greedy Modularity 

 The first community detection we tried was greedy modularity proposed by Newman in 

2004 as an agglomerative hierarchical clustering method (Newman, 2004). The algorithm is 

interesting to try as a first one as it is a simple heuristic meant to find partitions with high 

modularity with reasonable computational time. It is also the first greedy algorithm proposed (Li 

et al., 2020) and results can be compared further on with those of more sophisticated algorithms. 

It initializes by having each node belong to its own community then repeatedly merges pairs of 

communities together and chooses the merger for maximizing modularity. Modularity 

maximization has two opposite yet coexisting issues; it can split true communities into smaller 

clusters and in other cases, identify large clusters from what would be smaller communities (Chen 

et al., 2014).  

 

Figure 9. Misidentified communities by greedy modularity (Chen et al., 2014, p.59) 
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3.1.2. Louvain 

 Another greedy modularity optimization we tried was the Louvain algorithm as it is one of 

the most popular community detection algorithms, described as “simple and elegant” (Traag et al., 

2019, p. 2). The Louvain algorithm works in two steps. The first one, similarly to the previous 

algorithm, sees each node at first be its own community, and be moved from one community to 

another in a way which maximizes modularity. The step creates an aggregate network, where each 

community from the local moving phase becomes a node in the network. The steps are then 

repeated. This algorithm is also interesting as the number of iterations is usually small and the first 

iteration takes most computation time. It is therefore easily scalable to large networks. However, 

the final result is highly impacted by the order in which the nodes are merged in the first step 

(Traag et al., 2019). 

 

Figure 10. Louvain algorithm (Traag et al., 2019, p.2) 
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3.1.3. FluidC 

 The next algorithm we decided to try was a new type of Label Propagation Algorithm, 

namely, Asynchronous Fluid Communities. The algorithm presented interest as it offers the 

advantages of LPAs in terms of low computational cost and scalability yet presents a novel 

approach to community detection. Additionally, it has been integrated into the NetworkX package.  

It presents significantly different results to other methods and it is the first LPA to identify a 

variable number of communities in a network. It was first introduced in Barcelona by Parés et al. 

in 2018 with the objective of providing high quality partitioning of communities for large 

networks. They based themselves on the “idea of fluids interacting in an environment, expanding 

and contracting as a result of that interaction” (Parés et al., 2018, p.1).  

 

 

 

The FluidC algorithm proceeds as follows: first, each of the initial k communities is 

initialized in a random vertex v in the graph. Then, using an update rule (equation 1) the algorithm 

iterates over all vertices in a random order, updating the community of each vertex based on its 

own community and the communities of its neighbours, returning the communities with maximum 

aggregated density. This process is performed several times until convergence. At all times, each 

community has a total density of 1, which is equally distributed among the vertices it contains. If 

Figure 11. Fluid Communities algorithm with k=2 (Parés et al., 2018, p.3) 
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a vertex changes of community, vertex densities of affected communities are adjusted 

immediately. When a complete iteration over all vertices is done, such that no vertex changes the 

community it belongs to, the algorithm has converged and returns the final communities. 

 

 

FluidC is asynchronous, meaning that it is possible that some vertices update their labels 

and others do not. This ensures that a community does not lose all its vertices and be removed, 

which would happen if the algorithm were synchronous, and a community would lose a vertex, 

but density would not be increased immediately. Conversely, FluidC does not permit the creation 

of monster communities as large communities can only keep its size by having many intra-

community edges keeping its density lower.  

 

3.2. Time Series Networks 

We found with our exploratory data analysis and community detection algorithms that 

there is an effect of time on the demand of bikes in the complex network. This gave us another 

appealing direction to analyze and explore our data and use methods yet unknown to us, which is 

building networks using time series. We used two main methods which aim to apply network 

science to temporal data mining. To convert time series data into a network, we first used a 

visibility graph and then time series clustering. 

Equation 1. Update rule of FluidC (Parés et al., 2018, p.3) 
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3.2.1. Visibility Algorithm 

The visibility algorithm, as presented in by a fellow classmate, was introduced by Spanish 

researchers in 2008 as a simple and computationally fast method of mapping a time series into a 

network. This algorithm sees time series data converted into a network is by using a test of 

visibility. Each bar in the histogram is a series data representing a demand, which then becomes a 

node in the network. The edges are connected to the demand or nodes which can be directly 

observed without obstruction.  

 

  

 

 The method is compelling as it considers the time series as a landscape. In the resulting 

graph, two nodes are connected if there is “visibility”, or a straight line connecting the series 

data, if this line does not intersect any intermediate data height, following the equation:   

Figure 12. Example of a time series and the associated visibility graph (Lacasa et al., 2008, p.9) 
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The resulting network is connected, undirected and invariant under transformations. 

Indeed, apart from being computationally favourable, this method presents the advantage of being 

retains its features against transformations. Indeed, the constructed graph inherits several 

properties of the series, so that periodic series convert into regular networks, random series into 

random networks, and fractal series into scale free networks. 

 

3.2.2. Time series clustering 

Another method was presented by Ferreira and Zhao in 2016 using time series clustering. 

This method is of particular interest to us as it applies community detection techniques for time 

series clustering, which had not been reported in the literature before. The main objective for the 

authors’ proposed method was the “transformation of time series from time-space domain to 

topological domain” (Ferreira & Zhao, 2016, p.227). It uses the topological structure of the 

underlying network that is constructed during its clustering process to detect shape patterns in the 

time series.  

 

Equation 2. Visibility criterium (Lacasa et al., 2008, p.2) 

Figure 13. Various time series clustered into two communities (Ferreira & Zhao, 2016, p.235) 
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This method is unique in that each node is a time series, connected to others, which are 

then used to form clusters, with the goal of dividing the set of time series into clusters of similar 

ones. The algorithm starts on a dataset of time series with a data normalization process, then applies 

a distance measure or similarity metric to obtain the differences between time series. The network 

is then constructed using either a minimum threshold of similarity ℰ between two networks (which 

is different for different metrics) or a predefined number of k nearest networks. After the network 

is constructed, several community detection algorithms can be applied, giving us insight into the 

time series similarities. 

 

  

Figure 14. Time series clustering algorithm (Ferreira & Zhao, 2016, p.236) 
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4. Results 

4.1. Community detection  

 The package NetworkX was used in Python to construct an aggregate graph with journeys 

form all months from the year 2019 and a separate graph for each month, then to draw a preliminary 

graph of the nodes. It was then used to implement greedy modularity on the aggregate graph, 

clearly identifying two large communities, separating the city between North-West and South-

East. As previously discussed, this algorithm poses the risk of merging real communities smaller 

than a certain threshold to form large clusters.  

 

 When applying asynchronous fluid algorithm from NetworkX, we then sought to identify 

more meaningful communities and set k larger to 2. Such meaningful communities were identified 

when k = 5, even accounting for the randomness of different seeds.  

Figure 15. 2019 communities identified through greedy modularity 
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Figure 16. 2019 communities identified through FluidC 

Figure 17. 2019 communities identified through FluidC/month 
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An interesting aspect of being able to set the number of clusters and the seed is applying 

the algorithm to different months and interpret recognizable patterns. Figure 16 indicates some 

communities expanding over the summer months with a more balanced community distribution in 

April and October.  

 

4.2. Time Series Analysis 

In order to create time series, we had to convert the dataset to a time series one. The data 

was originally in an edge list format, where each row of the data represents one bicycle journey. 

To convert this to a time series dataset, rides had to be aggregated for every day, that is, we 

calculated the number of rows (or rides) for each day and presented them as demand. This results 

in a list of time series bicycle demand, which can be used to create networks.  

 For the visibility graph, we used the daily demand data for the year 2019, that is 201 days 

and hence 201 nodes which comes to about 6 and a half months. The data is not normalized as the 

method is invariant to transformation. We then applied community detection algorithms to this 

network. First using greedy modularity, we find that the days closer together are more often in a 

group, which might reduce the amount of information we can get from such a graph.  

 

 

 

 

Figure 18. 2019 time series communities identified with 

greedy modularity 
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 When using the FluidC algorithms, this issue was exacerbated, where communities had all 

closed nodes or days clustered together. A better community detection algorithm was indicated. 

 

We then looked at the use of k-clique communities, which gave us nodes forming cliques 

of size k with other nodes. K = 5 was selected here. The communities were more indicative of the 

importance or similarity of these days. 

Figure 19. 2019 time series communities identified with FluidC 

Figure 20. 2019 time series communities identified with k-clique 
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To obtain more insight, we used centrality measures to see how the different days stand 

within them and list the days with the top five centrality measures. This diagram shows us that the 

same two days have the highest measures for all measures, but the days vary for different methods 

from the third highest position. Each of these might give a different insight into special user 

behaviour of said days.  

 

 

For the time series clustering method, we first used the demand for the months for the years 

2019 and 2020 and separated them into different series. Then, a dynamic time warping distance 

and a pearson’s correlation distance was used to calculate the 5 closes edges. In pearson’s case, it 

was 4 as each node is perfectly correlated with itself. We then tried a greedy modularity and a 

Louvain algorithm. Both of them had similar results in terms of clusters. We tried different types 

of distance results as they might have given different insights into the data. However, the results 

indicate similarity between different months of the demand for BIXI bikes. We particularly 

appreciated dynamic time warping as it had the ability to take into account delay in patterns 

Table 3. Days with highest centrality / centrality measure 
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between series. In the paper, time series data was simulated with a specified class. A RAND index 

was used to measure accuracy. In our case we did not have information about classes, so we 

decided on a more of an unsupervised approach. 

 

 

 

 

 

 

 

 

 

We also used weeks for the time series nodes with the 2019 bixi data, with 27 weeks in 

total. This gives us insight into similarity between different weeks. 

 

Figure 21. Month time series clustering via CD using dynamic time warping (left) and Pearson’s 

Correlation (right) 

Figure 22. Week time series clustering via CD using dynamic time warping (left) and Manhattan (right) 
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For further exploration, we also decided to make a time series data for each of the BIXI 

stations for 201 days of the service operation in 2019. The time series nodes represent each bike 

station and are labelled with their official codes. We only kept those stations which had at least 

one ride taken from it every day. We then used the DTW to obtain edges and applied a Louvain 

community detection algorithm. This plot makes it possible to compare different stations using 

time series complex network clustering. 

 

  

Figure 23. Week time series clustering via CD using Harmonic mean (left) and Cosine (right) 

Figure 24. Station time series clustering via CD using dynamic time warping and 

Louvain 
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5. Conclusion 

 

Using BIXI data has permitted us to explore and become acquainted with a variety of 

algorithms for community detection, including the novel approach of time series clustering for 

studying spatiotemporal data.  

Our results indicated that some community detection algorithms were more appropriated 

for our bicycle-sharing data than others. To be more precise, evaluating communities for such 

densely connected network with temporal significance was a challenge. We were able to overcome 

this by considering time acknowledging methods for complex network creation, like visibility 

graph and time series clustering. We still retain the limitations of working with data that does not 

contain full journey information, which would make for an interesting future study. 

Another interesting aspect for further study would be to separate the network into workday 

usage and weekend usage. Previous studies have shown distinct community structures for usage 

related to commuting vs for leisure. Zaltz et al. (2013) found that during the week, the network 

would exhibit communities analogous to industry clusters, quite different to the clusters identified 

for weekends. This aspect could be studied in a more focused project. 
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